Effects of altitude on biceps brachii and erector spinae muscles oxygen saturation during basic cardiopulmonary resuscitation: a simulation study
Abstract
Objective: To assess biceps brachii and erector spinae muscular oxygen saturation (SmO2) by near infrared spectroscopy (NIRS), during 10 minutes of resuscitation at simulated altitudes of 600, 3000 and 5000 m before and after carrying out a simulation program for adaptation to hypoxia. Performing and maintaining a good-quality cardiopulmonary resuscitation (CPR) at higher altitudes may pose a significant challenge to resuscitators due tom decrease in arterial oxygen saturation. This fact adversely effects the quality of resuscitation. Methods: Participants performed 10 minutes of CPR on a mannequin in the laboratory in environments that simulated altitudes. Subsequently, a standardized altitude conditioning protocol was carried out using intermittent hypoxia. The participants performed CPR again under the conditions and altitudes previously referred to. Results: Initial heart rate (HR) at 5000 > 3000 m, and both > 600 m. HR at each altitude was higher conditioning at the end of CPR. The SmO2 of both muscles showed no differences at the beginning and at the end of CPR and was higher in both muscles after the conditioning program before and at the end of CPR. In both muscles, SmO2 values before and after conditioning show a slightly increasing trend during CPR. Conclusion: NIRS use allows developing an optimum training plan. The rescuer will know his limits and optimize his performance. The improvement in physical performance and recovery capacity induced by intermittent hypoxia conditioning programs increases the quality of CPR in prolonged cardiac arrests and in adverse conditions, such as at high altitudes.
2. Semeraro F, Greif R, Böttiger BW, Burkart R, Cimpoesu D, Georgiou M, et al. European resuscitation council guidelines 2021: systems saving lives. Resuscitation. 2021;161:80-97.
3. Cunningham LM, Mattu A, O'Connor RE, Brady WJ. Cardiopulmonary resuscitation for cardiac arrest: the importance of uninterrupted chest compressions in cardiac arrest resuscitation. Am J Emerg Med. 2012;30(8):1630-8.
4. Olasveengen T, Semeraro F, Ristagno G, Castren M, Handley AJ, Kuzovlev A, et al. European resuscitation council guidelines for resuscitation 2021: basic life support. Resuscitation. 2021;161:98-114.
5. Jui-Yi T, Fong-Chin S, Pai-Chin T, Ming-Yuan H, Su-Chun C, Hsun-Wen C, et al. Electromyography activity of selected trunk muscles during cardiopulmonary resuscitation. Am J Emerg Med. 2014;32(3):216-20.
6. Fernandez-Lopez M, Mateos-Lorenzo J, Pavon-Prieto P, Freire-Tellado M, Sanchez-Santos L, Estany-Gestal A, et al. Chest compressions and cardiopulmonary resuscitation. Why do we need technical or physical training? Resuscitation. 2015;96(1):13.
7. López-González A, Sánchez-López M, Rovira-Gil E, Ferrer-López V, Martínez-Vizcaíno V. Influencia del índice de masa corporal y la forma física de jóvenes universitarios en la capacidad de realizar compresiones torácicas externas de calidad sobre maniquí. Emergencias. 2014;26:195-201. [Spanish].
8. De Aquino-Lemos V, Antunes HK, Dos Santos RV, Lira FS, Tufik S, De Mello MT. High altitude exposure impairs sleep patterns, mood, and cognitive functions. Psycho-physiology. 2012;49(9):1298-306.
9. Savourey G, Launay JC, Besnard Y, Guinet A, Travers S. Normo- and hypobaric hypoxia: are there any physiological differences? Eur J Appl Physiol.2003;89:122-6.
10. Coppel J, Hennis P, Gilbert-Kawai E, Grocottet MPW. The physiological effects of hypobaric hypoxia versus normobaric hypoxia: a systematic review of crossover trials. Extrem Physiol Med. 2015;4:2.
11. Suto T, Saito S. Considerations for resuscitation at high altitude in elderly and untrained populations and rescuers. Am J Emerg Med. 2014;32:270-6.
12. Wang JC, Tsai SH, Chen YL, Hsu CW, Lai KC, Liao WI, et al. The physiological effects and quality of chest compressions during CPR at sea level and high altitude. Am J Emerg Med. 2014;32:1183-8.
13. Narahara H, Kimura M, Suto T, Saito H, Tobe M, Aso C, et al. Effects of cardiopulmonary resuscitation at high altitudes on the physical condition of untrained and unac-climatized rescuers. Wilderness Environ Med. 2012;23:161-4.
14. Sato T, Takazawa T, Inoue M, Tada Y, Suto T, Tobe M, et al. Cardiorespiratory dynamics of rescuers during cardiopulmonary resuscitation in a hypoxic environment. Am J Emerg Med. 2018;36:1561-4.
15. Carballo-Fazanes A, Barcala-Furelos R, Eiroa-Bermúdez J, Fernández-Méndez M, Abelairas-Gómez C, Martínez-Isasi S, et al. Physiological demands of quality cardiopulmonary resuscitation performed at simulated 3250 meters high. Am J Emerg Med. 2020;38:2580-5.
16. Egger A, Niederer M, Tscherny K, Burger J, Fuhrmann V, Kienbacher C, et al. Influence of physical strain at high altitude on the quality of cardiopulmonary resuscitation. Scan J Trauma Resusc Emerg Med. 2020;28(1):19.
17. Inglis EC, Iannetta D, Murias JM. Evaluating the NIRS-derived microvascular O2 extraction “reserve” in groups varying in sex and training status using leg blood flow occlusions. Public Library of Science. 2019;14(7):1-33.
18. Ferrari M, Mottola L, Quaresima V. Principles, techniques and limitations of near infrared spectroscopy. J Appl Physiol. 2004;29(4):463-87.
19. Özyener F. Evaluation of intra-Musclar oxygenation during exercise in humans. J Sports Sci Med. 2002;1(1):15-9.
20. Hamaoka T, McCully KK, Quaresima V, Yamamoto K, Chance B. Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans. J Biomed Opt. 2007;12(6):1-16.
21. Wilkinson TJ, White A, Nixon DG, Gould DW, Watson EL, Smith A. Characterizing skeletal muscle haemoglobin saturation during exercise using near-infrared spectroscopy in chronic kidney disease. Clin Exp Nephrol. 2019;23(1):32-42.
22. Farzam P, Starkweather Z, Franceschini MA. Validation of a novel wearable, wireless technology to estimate oxygen levels and lactate threshold power in the exercising muscle. Physiol Rep. 2018;6(7):e13664.
23. Bellotti C, Calabria E, Capelli C, Pogliaghi S. Determination of maximal lactate steady state in healthy adults: can NIRS help? Med Sci Sports Exerc. 2013;45(6):1208-16.
24. Endo T, Kime R, Watanabe T, Fuse S, Murase N, Kurosawa Y, et al. Reduced optical path length in the vastus lateralis during ramp cycling exercise. Adv Exp Med Biol. 2020;1232(1):239-44.
25. Humon. Humon Hex. 2023. Available at: https://humon.es/ [Access 4 October 2023].
26. Fryer SM, Stoner L, Stone KJ, Giles D, Sveen J, Garrido I, et al. Forearm muscle oxidative capacity index predicts sport rock-climbing performance. Eur J Appl Physiol. 2016;116(8):1479-84.
27. Paredes-Ruiz MJ, Jódar-Reverte M, Ferrer-López V, Martínez-González-Moro I. Muscle oxygenation of the quadriceps and gastrocnemius during maximal aerobic effort. Revista Brasileira de Medicina do Esporte. 2021;27:212-27.
28. Levine BD. Intermittent Hypoxic Training: fact and fancy. High Alt Med Biol. 2002;3(2):177-93.
29. iAltitude. Protocolo preacondicionamiento a hipoxia normobárica. Madrid: iAltitude; 2019. [Spanish].
30. Bastida-Castillo A, Gómez-Carmona CD, Pino-Ortega J. Efectos del tipo de recuperación sobre la oxigenación muscular durante el ejercicio de sentadilla. Kronos. 2016; 15(2):1-12. [Spanish].
31. Hernández-Vicente A, Hernando D, Marín-Puyalto J, Vicente-Rodríguez G, Garatachea N, Pueyo E, Bailón R. Validity of the polar H7 heart rate sensor for heart rate variability analysis during exercise in different age, body composition and fitness level groups. Sensors (Basel). 2021;21(3):902-16.
32. Cohen J (1988). Statistical power analysis for the behavioral sciences 2nd ed. Hillsdale, NJ: Lawrence Erlbaum Associates, Publishers; 1988.
33. Rosales MA, Shute RJ, Hailes WS, Collins CW, Ruby BC, Slivka DR. Independent effects of acute normobaric hypoxia and hypobaric hypoxia on human physiology. Nature portfolio. 2022;12:19570.
34. Hansen J, Sander M, Hald CF, Victor RG, Thomas GD. Metabolic modulation of sympathetic vasoconstriction in human skeletal muscle: role of tissue hypoxia. J Physiol. 2000;527(2):387-36.
35. McDonald CH, Heggie J, Jones CM, Thorne CJ, Hulme J. Rescuer fatigue under the 2010 ERC guidelines, and its effect on cardiopulmonary resuscitation (CPR) performance. Emerg Med J. 2013;30:623-7.
36. Wilkinson TJ, White AEM, Nixon DGD, Gould DW, Watson EL, Smith AC. Characterising skeletal muscle hemoglobin saturation during exercise using near-infrared spectroscopy in chronic kidney disease. Clin Exp Nephrol. 2019;23:32-42.
37. Abelairas C, Romo V, Barcala R, Palacios A. Efecto de la fatiga física del socorrista en los primeros cuatro minutos de la reanimación cardiopulmonar posrescate acuático. Emergencias. 2013;25:184-90. [Spanish].
38. Hong DY, Park SO, Lee KR, Baek KJ, Shin DH. A different rescuer changing strategy between 30:2 cardiopulmonary resuscitation and hands-only cardiopulmonary resuscitation that considers rescuer factors: a randomized cross-over simulation study with a time-dependent analysis. Resuscitation. 2012;83(3):353-9.
39. Russo SG, Neumann P, Reinhardt S, Timmermann A, Niklas A, Quintel M, et al. Impact of physical fitness and biometric data on the quality of external chest compression: a randomized, crossover trial. BMC Emerg Med. 2011;11:20.
40. Sharma AP. Factors affecting sea-level performance following altitude training in elite athletes. J Sci Sport Exerc. 2022;4(4):315-30.
Files | ||
Issue | Vol 8 No 4 (2024): Autumn (October) | |
Section | Original article | |
DOI | 10.18502/fem.v8i4.17080 | |
Keywords | ||
Basic Cardiac Life Support Heart Massage High Altitude Hypoxia Near-Infrared Spectroscopy |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |