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Abstract: Objective: Deep learning-based automatic segmentation provides significant advantages over traditional man-
ual segmentation methods in medical imaging. Current approaches for segmenting regions of Coronavirus dis-
ease 2019 (COVID-19) infections mainly utilize convolutional neural networks (CNNs), which are limited by
their restricted receptive fields (RFs) and consequently struggle to establish global context connections. This
limitation negatively impacts their performance in accurately detecting complex details and boundary patterns
within medical images.
Methods: This study introduces a novel dual-path Swin Transformer-based network to address these limita-
tions and enhance segmentation accuracy. Our proposed model extracts more informative 3D input patches
to capture long-range dependencies and represents both large and small-scale features through a dual-branch
encoder. Furthermore, it integrates features from the two paths via the new transformer interactive fusion (TIF)
module. The architecture also incorporates an inductive bias by including a residual convolution (Res-conv)
block within the encoder.
Results: The proposed network has been evaluated using a 5-fold cross-validation technique, alongside data
augmentation, on the publicly available COVID-19-CT-Seg and MosMed datasets. The model achieved Dice
coefficients of 0.872 and 0.713 for the COVID-19-CT-Seg and MosMed datasets, respectively, demonstrating its
effectiveness relative to prior methodologies.
Conclusion: The significant improvements in segmentation accuracy, demonstrated by the achieved Dice co-
efficients on the COVID-19-CT-Seg and MosMed datasets, highlight the potential of our approach to enhance
automated segmentation in medical imaging.
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1. Introduction

Coronavirus disease 2019 (COVID-19) is diagnosed using a

combination of laboratory methods, clinical examinations,

and imaging techniques, with physicians typically analyz-

ing imaging results manually (1). Common imaging find-

ings associated with COVID-19 include peripheral and bilat-

eral ground-glass opacities, consolidative pulmonary opaci-

ties, localized vascular enlargement, and bronchiectasis (1-

3). The manual analysis of these findings is time-consuming

and may be linked to a shortage of human resources. Con-

versely, when it comes to diagnostic purposes, specialists

may have significantly differing views regarding the same

subject. Additionally, a specialist’s diagnostic accuracy may

vary based on several factors, including distraction and bore-

dom, among others. Currently, artificial intelligence (AI)

algorithms have become important clinical tools, improv-

ing and speeding up the diagnostic process. Experiences

and insights acquired during the coronavirus epidemic have

demonstrated their value in integrating AI algorithms for

managing the disease and mitigating its impact.

Since building a large-scale, high-resolution, and precisely

annotated dataset is a time-consuming and costly process

that also relies on medical expertise, the majority of stud-

ies have evaluated their models using two widely used pub-

lic datasets, namely COVID-19-CT-Seg (4) and MosMed (5),

which include 20 and 50 images, respectively. A predominant

number of these studies have developed U-Net-based CNNs

for the segmentation of COVID-19-infected areas (6-8).

Furthermore, several recent studies have attempted to im-

prove segmentation accuracy by adding modules into their

networks. Singh et al. (9), for example, introduced Lung-

INFseg, a new segmentation model that makes use of slice-

based input and receptive field-aware modules. This ap-

proach had a Dice coefficient of 0.803 on the COVID-19-CT-

Seg dataset. Zheng et al. (10) introduced the 3D CU-Net

architecture. It leveraged data augmentation techniques, a

pyramid fusion module, and the Tversky loss function, re-
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sulting in Dice scores of 0.778 and 0.668 on the COVID-19-

CT-Seg and MosMed datasets, respectively.

Owais et al. (11) proposed a convolutional network named

meta-domain adaptive segmentation network (MDA-SN),

which is based on MobileNetV2. The model was trained sep-

arately on the COVID-19-CT-Seg and MosMed datasets and

used grouped and multi-scale dilated convolution layers, a

residual attention mechanism, and an adaptive data normal-

ization module. In this work, cross-dataset evaluations were

conducted to assess generalization capability, leading to an

average Dice coefficient of 0.759 for the two datasets.

Given that an increase in the number of convolutional lay-

ers in a CNN model can result in the loss of critical details,

studies (12,13) have shown that transformers present a vi-

able alternative for CNNs in the structure of models. Geng

et al. (12) developed an encoder-decoder model called STC-

Net, in which convolutional blocks were used for extracting

local features, and the ReSwin Transformer blocks were ap-

plied to capture long-range information. This model was

introduced to improve the accuracy of local feature extrac-

tion and the global context, while maintaining a balance

between computational efficiency and performance accu-

racy. In the study (13), a hierarchical agent transformer net-

work (HATNet) was introduced by Tian et al. (13). This

model is based on agent transformer blocks. These blocks

are designed to extract features with high precision and use

a non-local attention mechanism to model global features

with linear complexity. To prevent the degradation of fea-

tures during the processes of extraction and fusion, the mod-

ules, namely diversity restoration and full-scale bidirectional

feature pyramid network, were used in sequence. Lastly, in

studies (12,13) where STCNet and HATNet models were de-

signed, Dice scores of 0.799 and 0.841 were reported on the

small COVID-19-CT-Seg dataset, respectively.

Recently, transformer-based architectures, primarily de-

signed for sequence-to-sequence modeling in natural lan-

guage processing, have sparked considerable interest within

the computer vision (CV) community. The multi-head self-

attention (MSA) mechanism inherent in these models fa-

cilitates the effective establishment of global relationships

among the sequence tokens and increases the model’s ca-

pacity to capture long-range dependencies, particularly for

pixel-based tasks in computer vision (14,15). Accordingly, we

designed a 3D U-shaped architecture that can extract more

optimal local and global features by leveraging the strengths

of CNNs and the Swin Transformer blocks.

2. Methods

2.1. Study design and setting

Multi-scale feature representation is critical for optimizing

vision transformers in medical image segmentation (14,16-

19). This paper describes a novel Swin Transformer-based

U-shaped encoder-decoder architecture. This architecture

partitions images into non-overlapping patches at two res-

olutions: large and small. A dual-scale encoder processes

patches to extract complementary features at various seman-

tic levels. To facilitate the effective integration of multi-scale

representations, we propose a transformer interactive f usion

(TIF) module that allows for cross-scale feature interaction.

The proposed framework significantly improves the conven-

tional U-shaped architecture by leveraging the Swin Trans-

former’s hierarchical modeling capabilities and the strengths

of multi-scale processing, offering enhanced performance

for medical image segmentation tasks.

Notably, the proposed model operates in three dimensions

and is evaluated through the application of data augmenta-

tion techniques alongside a 5-fold cross-validation method-

ology on the COVID-19-CT-Seg (4) and MosMed (5) public

datasets.

2.2. Dataset of COVID-19-CT-Seg

The COVID-19-CT-Seg dataset comprises 20 lung CT scan

images, accompanied by three benchmark conditions. It in-

cludes a subset of patients diagnosed with COVID-19, where

binary pixel masks delineating the infection regions are pro-

vided. The CT scans in this dataset possess dimensions of

512×512 and 630×630, comprising multiple slices (4,6). This

dataset is licensed under the Creative Commons Attribution-

NonCommercial-ShareAlike International (CC BY-NC-SA) li-

cense (20). Also, this dataset is a result of a collaborative effort

between the Coronacases Initiative and Radiopaedia’s open

data initiative (4).

2.3. Dataset of MosMed

The MosMed dataset encompasses a total of 1,110 CT scan

images from subjects, of which 42% are male, 56% are fe-

male, and the gender of the remaining 2% remains uniden-

tified (21). Importantly, a limited subset of this dataset,

comprising 50 out of 1,110 individuals, has been subjected

to expert annotation (5,7). In the annotation process for

each image, ground glass opacities and consolidation re-

gions were identified as positive pixels on the correspond-

ing mask. The masks obtained have been supplied in NIfTI

format and converted into Gzip archives (22). Also, this

dataset is governed by the Creative Commons Attribution-

NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0)

License (5,22).

2.4. Data augmentation techniques

The following volumetric data augmentation techniques

were deployed to boost the robustness and generalizability

of our model:

Random cropping: To ensure informative training samples,

sub-volumes were randomly selected from the original vol-

ume, each including at least a portion of the infected area.

Rotation: Volumes were randomly rotated around each axis

within ±15 degrees. This helped the model become invariant

to minor orientation changes in lung position.

Shifting: Random translations were applied along each axis
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with a shift limit of ±5% of the volume size.

Scaling: 3D volumes were randomly resized by a factor of 0.6

to 0.8, making the model more robust to changes in the size

of infected areas.

Intensity adjustment: Brightness adjustment involved scal-

ing the voxel intensities across the 3D volume by a constant

factor, which is typically between [0.9 and 1.1].

2.5. Swin Transformer-based dual multiscale ar-
chitecture

Figure 1 illustrates the overall structure of the proposed net-

work. This architecture is grounded in a two-path encoder.

The input is processed through two parallel patch embed-

ding layers. The first branch, with a patch size of 4×4×4, pro-

duces an output of shape H/4× W/4×D/4×48. The second

branch, with a patch size of 2×2×2, generates a feature map

of shape H/2× W/2×D/2×48. Each encoder branch passes

through a Res-conv Block to extract local features, followed

by a Swin Transformer to capture global dependencies. At

the beginning of each stage, the combination of the Res-conv

block with the Swin Transformer block plays a vital role in im-

age processing and the hierarchical analysis of features.

The shortcut connection within the Res-conv block facili-

tates the network’s ability to learn identity mappings along-

side other transformations. Moreover, the shortcut connec-

tion addresses critical challenges, including the vanishing

gradient problem, complications associated with the train-

ing process, and the necessity for extensive datasets (23).

The output generated from the Swin Transformer is subse-

quently passed to the merge layer at each stage. This layer

connects neighboring patches to preserve spatial informa-

tion and fine-grained details of the images. Furthermore, this

layer reduces the dimensionality of the combined features by

half (14). As such, it decreases the number of patches avail-

able for processing by the following Swin Transformer block,

thereby improving the network’s capacity to learn long-range

dependencies more efficiently.

Within the architecture presented, the TIF module is applied

at each stage to fuse multi-scale features and enable efficient

interactions between them. The features extracted at each

encoder stage are integrated into the CNN-based decoder

through skip connections, as illustrated in figure 1. The de-

coder part of this architecture resembles the decoder compo-

nent of the SwinUNETR (24). In the bottleneck section, the

resolution of the feature map is increased via a deconvolu-

tion layer, which is subsequently linked to the feature map

from the preceding stage. This process is similarly applied to

the other layers. Ultimately, the final output is subjected to a

convolution layer with a kernel size of 1×1×1, resulting in the

generation of a segmented image.

2.6. Swin Transformer block

This block comprises two sub-blocks (Figure 2). The block’s

architecture includes a normalization layer, a window-based

MSA mechanism, and a multi-layer perceptron (MLP). In

this context, the notation W-MSA refers to conventional

window-based MSA modules, while SW-MSA denotes shifted

window-based MSA modules (24). The default window size

is set to 7. In each sub-block, the output from the window-

based module is transferred to the normalization layer. This

layer stabilizes the output within an optimal range, con-

tributes to a more stable training process (25). Subsequently,

an MLP is applied to this output. The residual connection

within the Swin Transformer facilitates the model’s learning

of richer feature representations by appending the processed

features to the original input. According to figure 2, the ini-

tial sub-block output (l) in the Swin Transformer block is ob-

tained as follows:

Ẑ l =W-MSA(LayerNorm(Zl −1 ))+Zl −1 (1)

Zl =MLP(LayerNorm(Ẑ l ))+Ẑ l , (2)

The W-MSA module employs multiple parallel self-attention

(SA) mechanisms, each addressing distinct aspects of the in-

put data. The W-MSA module generates attention maps by

integrating intuitions from various dimensions, thereby fa-

cilitating interpretability regarding the model’s focus during

the segmentation task. In the initial sub-block, SA is applied

to the non-overlapping windows of the patches, with the SA

scores calculated among the patches within each window.

Consequently, the computational scope of SA is confined to

local windows rather than encompassing all image patches.

The second sub-block introduces SA calculations within

shifted partitions (26). The second sub-block output (l+1) is

derived as follows ( Figure 2):

Ẑ l +1=SW-MSA(LayerNorm(Zl ))+Zl (3)

Zl +1=MLP(LayerNorm(Ẑ l +1))+Ẑ l +1, (4)

The second sub-block enhances the model’s capability to

comprehend long-range relationships and contextual infor-

mation within the images. Specifically, SW-MSA computes

attention across adjacent windows by cyclically shifting the

windows, thereby enabling the model to capture broader

contextual data. This methodology employs an efficient

batch processing technique by cyclically shifting windows to

the upper left (14). This approach creates batch windows

that contain multiple smaller non-adjacent sub-windows in

the feature map. Despite being spread out, the total num-

ber of batch windows remains constant, similar to the stan-

dard window partitioning method, where each batch win-

dow has a fixed size. This consistency ensures efficient im-

age processing. In essence, the method ensures that the

processing mechanism remains regular while allowing for

more flexible interactions between regions. In addition,

both Window-based Multi-head Self-Attention (W-MSA) and

Shifted Window-based Multi-head Self-Attention (SW-MSA)

incorporate relative position bias. This enables the model to

process the features of each token, while capturing their rela-

tive spatial positions within a window. Rather than relying on

fixed absolute coordinates, the model learns token relation-

ships, enhancing its ability to capture spatial structure and

dependencies.

Figure 3 presents the attention map generated by the model
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during its decision-making process. This map highlights re-

gions in the input image that receive the highest focus during

prediction, thereby improving the interpretation of model

behavior.

2.7. Transformer interactive fusion module (TIF)

The TIF module is applied at each stage to fuse multi-scale

features. Figure 4 illustrates the structure of this module.

This module initially receives two features from two

branches. To clarify, for the outputs of the two branches at

the same phase i (where i=1,. . . ,5), we denote the outputs of

the prime branch as Fi =[fi
1,fi

2,. . . ,fi
h×w×d ]∈ RC ×(h×w×d)

and the outputs of the complementary branch as Gi =

[gi
1,gi

2,. . . ,gi
(h/2×w/2×d/2)]∈RC ×(h/2×w/2×d/2). Subse-

quently, the transformation output Gi is obtained through

the following operation:

ĝ i =Flatten (Avgpool(Gi )) (5)

where ĝ i represents the global abstracted data derived from

Gi , facilitating its interaction with Fi at the pixel level. The

concatenation of Fi and ĝ i results in a sequence of 1+h×w×d

tokens, which are subsequently input into the transformer

layer to compute the SA representation:

F̂ i =Transformer([ĝ i ,fi
1,fi

2,. . . ,fi
h×w×d ])=

[ f̂ i
0, f̂ i

1, f̂ i
2,. . . , f̂ (h×w×d) ]∈RC ×(1+h×w×d)

Fi
out =[ f̂ i

1, f̂ i
2,. . . , f̂ i

h×w×d ]∈ RC ×(h×w×d) (6)

W her eF i
out represents the outcome of the small-scale

branch within the TIF module. This approach establishes

connections between each token in Fi and the entirety of

Gi , thereby enabling small-scale features to access high-

level contextual information from the larger-scale branches.

Finally, the output from each transformer is processed by

the convolution layer following a series of reshaping, up-

sampling operations, and concatenation of the feature ma-

trices (Figure 4).

2.8. Objectives

The primary objective of this study was to assess the per-

formance and effectiveness of current methodologies used

for segmenting areas impacted by COVID-19. In particular,

we aimed to analyze various segmentation techniques, com-

paring their performance, reliability, and computational effi-

ciency.

2.9. Statistical analysis

We implemented the proposed model in Python and trained

using an NVIDIA 1080 Ti graphics card. The proposed

model was evaluated using the COVID-19-CT-Seg and the

MosMed datasets. The evaluation process included 5-fold

cross-validation and data augmentation techniques, with the

model subjected to training for 500 epochs utilizing the Dice-

CELoss loss function, and a batch size of 1. The AdamW op-

timizer was utilized to optimize the parameters of the pro-

posed model, with an initial learning rate of 1e−4. A cosine

decay learning rate scheduler with linear warm-up was em-

ployed to adjust the learning rate during training, where the

warm-up phase spanned the first 50 epochs.

To assess segmentation performance, we employed common

metrics such as the Dice coefficient, sensitivity, and speci-

ficity, which collectively measure the effectiveness of our

model in detecting COVID-19 lesions, indicating the proxim-

ity of predicted outputs to actual labels.

Specifically, the Dice coefficient reflects the degree of overlap

between the model’s segmented region and the target mask,

with values ranging from zero (indicating no overlap) to one

(indicating complete overlap) (27).

3. Results

In this work, we first evaluated the performance of UN-

ETR and SwinUNETR models on the COVID-19-CT-Seg and

MosMed datasets for the infection segmentation task. On

the COVID-19-CT-Seg dataset, UNETR achieved a Dice co-

efficient of 0.852, while SwinUNETR demonstrated superior

segmentation accuracy with a Dice coefficient of 0.866. Sim-

ilarly, the Dice values obtained on the MosMed dataset were

0.69 for UNETR and 0.706 for SwinUNETR. Due to the su-

perior performance of SwinUNETR compared to UNETR,

we chose the SwinUNETR architecture as the basis for our

model.

We subsequently optimized the SwinUNETR and developed

a dual-path multi-scale network aimed at detecting COVID-

19 lesions. In addition to segmenting COVID-19 infectious

regions in the two datasets, we also segmented lung regions

within the COVID-19-CT-Seg dataset. Tables 1 and 2 present

the evaluation results of our approach.

4. Discussion

In situations characterized by disease outbreaks and a short-

age of human resources, deploying deep learning-based au-

tomatic algorithms, known for their rapid processing and

high generalizability, can improve diagnostic efficiency sig-

nificantly. As with other diseases, deep learning algorithms

are currently employed to study COVID-19. Most existing

studies use U-Net-based CNNs for COVID-19 lesion segmen-

tation, with these networks extracting features via convolu-

tional layers. For example, in studies (6-8) that used CNN

models, Dice scores of 0.761, 0.673, and 0.704 were reported

on a dataset of 20 CT images.

A significant limitation of the U-Net and similar architectures

is their insufficient ability to learn long-range dependencies.

These networks primarily depend on local RFs, which high-

light nearby spatial information. As a result, the features pro-

vided to the decoder of these networks are often deficient

in spatial resolution. Furthermore, many of these networks

do not effectively distinguish between background and fore-

ground pixels due to the application of uniform filters across

the input data. As a result, such models may struggle to op-

timally segment lesions of varying scales. In summary, CNN-

based models demonstrate constraints in their capacity to

extract global features, learn long-range dependencies, and
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preserve high-resolution features. The limitations of CNNs

hinder their ability to diagnose border patterns of COVID-

19-related lesions accurately and to differentiate these from

other respiratory diseases, despite the critical importance of

boundary pattern detection in medical imaging.

Recent studies (12,13) have shown that transformer-based

architectures can significantly improve feature extraction

performance and reduce the amount of challenges in the

segmentation task. Since the model’s ability to model spa-

tial dependencies between slices is critical for CT volumet-

ric segmentation, approach (13) performed better than ap-

proach (12). In this study, leveraging this insight, we in-

troduce our innovative strategies within a 3D framework to

achieve higher diagnostic accuracy than recent approaches.

In the proposed model, Swin Transformer blocks are used for

feature extraction, producing attention maps that improve

the model’s focus on pertinent regions of the image. The SA

mechanisms within the Swin Transformer blocks enable the

adaptation of receptive field sizes across various regions of

the image. This flexibility significantly improves our model’s

ability to identify COVID-19 lesions of various shapes and

sizes. Additionally, as the proposed model encompasses two

paths, it can facilitate large-scale and small-scale informa-

tion extraction, allowing for the effective capture of features

within image patches and pixel-level information. We de-

signed a transformer block-based TIF module to combine

features, striking a balance between pixel-level characteris-

tics and overall contextual information. Furthermore, the

proposed model integrates an inductive bias by implement-

ing the Res-conv block prior to the Swin Transformer block.

The inductive bias refers to the assumptions that guide the

algorithm’s predictions on unseen data, allowing it to pri-

oritize specific solutions regardless of the data it has previ-

ously encountered (28). Given the importance of local details

in medical imaging, we focused on the decoder component

of the model based on convolutional layers. The proposed

model has been evaluated on two publicly datasets, namely

COVID-19-CT-Seg (4) and MosMed (5). On the COVID-19-

CT-Seg dataset, the proposed model increased the Dice score

to 0.872 from 0.841, the highest value in earlier research by

Tian et al. (13).

Therefore, our model performs more effectively than recent

research due to the global modeling capability of Swin Trans-

former blocks and the use of multi-resolution and dual-path

strategies.

Table 3 depicts the trade-offs between the complexity of

our models (in terms of the number of parameters and

FLOPs) and their inference efficiency on the COVID-19-CT-

Seg dataset. This table illustrates that the dual-path Swin

Transformer-based model, despite its fewer parameters than

UNETR, requires a high number of FLOPs and exhibits the

longest inference time. Nevertheless, this model outper-

forms UNETR and SwinUNETR in segmentation, despite the

higher computational cost.

The designed model was once again evaluated on a different

dataset known as MosMed. In this instance, the Dice value

for this dataset increased by 4.5% relative to a prior work con-

ducted by Zheng et al. (10). Thus, the results obtained exhibit

the proposed model’s ability to discern patterns and bound-

aries as well as accurately identify target regions (positive pix-

els) over earlier approaches.

In the task of COVID-19 segmentation using CT images, one

of the main challenges is the severe class imbalance infected

regions are typically much smaller than the healthy areas or

background. As seen in Figure 5, infected regions (positive

pixels) are far outnumbered by non-infected regions (nega-

tive pixels). It reflects a class imbalance between positive and

negative pixels, with the predominance of negative samples

during training resulting in comparatively higher accuracy in

detecting negative pixels than positive ones. Consequently,

as observed in Tables 1 and 2, the specificity values are higher

than the sensitivity values in identifying infected regions.

Known as a combination of Dice Loss and Cross-Entropy

Loss functions, the DiceCELoss loss function helped our

model better segment small and large regions simultane-

ously. Dice Loss enables the model to appropriately identify

smaller classes, e.g., the infected areas, by emphasizing the

overlap between predictions and ground truth. In contrast,

Cross-Entropy Loss enables the model to accurately predict

dominant classes, e.g., the background, by minimizing dif-

ferences between predicted and actual class probabilities. In

other words, Dice Loss is sensitive to small classes, whereas

Cross-Entropy Loss is more suitable for large classes. Com-

bining the two acts similarly to class weighting helped bal-

ance the contribution of each class during training. In the

presented work, regions of interest (ROIs) were randomly

sampled from the input 3D images, with a focus on areas

affected by infection. This sampling strategy was aimed

at addressing the issue of class imbalance by broadening

the representation of minority classes (i.e., infected areas)

during training. By ensuring that the model encompasses

more examples of these underrepresented regions, it be-

comes equipped further to learn their features and enhance

segmentation performance. Following this targeted patch

sampling, we employed data augmentation techniques on

the selected patches. This subject not only helped avoid over-

fitting but also improved the model’s generalizability. The

integrated approach of focused sampling and augmentation

leads to more accurate and robust detection of infection re-

gions in 3D medical images.

In addition to segmenting COVID-19 infectious regions in

the two datasets, we also segmented lung regions within the

COVID-19-CT-Seg dataset, achieving a Dice score of 0.977. As

indicated in table 1, the Dice score associated with the lung

mask exceeds that of the infection mask for several reasons:

1. The boundaries of the lungs exhibit relatively sta-

ble descriptive features. The morphology, positioning, and

anatomical structure of the lungs remain consistent, whereas

COVID-19 lesions display significant variability in shape,

size, and localization (29).
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2. The delineation of lung boundaries in CT scan images

is particularly distinct owing to the tissue-air interface. The

pronounced contrast between air-filled lung tissue and sur-

rounding anatomical structures plays a critical role in en-

hancing segmentation outcomes (30). In contrast, the mar-

gins of lesions may intermingle with healthy lung tissue or

adjacent structures, complicating the segmentation process.

3. Lung tissue generally exhibits a relatively uniform inten-

sity profile, whereas lesions manifest diverse intensity pat-

terns. This disparity creates challenges in distinguishing be-

tween healthy lung regions and areas affected by COVID-19

(29).

The main challenge lies in accurately segmenting the COVID-

19 infection regions to ensure the precise detection of posi-

tive pixel classifications. Consequently, a higher occurrence

of false negatives is observed in the infection segmentation

compared to lung segmentation.

The designed network can serve as a versatile architecture

and deliver a unified solution for diverse objectives, while

traditional CNNs, typically require specialized architectures

tailored to specific tasks.

5. Limitations

Although the proposed approach demonstrates promising

performance, there are several limitations that warrant atten-

tion in future research. The reliance on extensive, COVID-19-

related annotated 3D medical imaging datasets poses a con-

siderable challenge. The process of collecting and manually

labeling such data is inherently labor-intensive and costly,

which often restricts the diversity and volume of training data

that is available. Major concern is the risk of overfitting,

given the small sample size and the complex, variable nature

of COVID-19-related imaging patterns. To mitigate overfit-

ting, more practical and actionable strategies can be used in

future research. Beyond conventional techniques (e.g., ro-

tation, scaling, and intensity variations), the integration of

other methods can be considered for data augmentation, in-

cluding:

• Elastic deformation, which simulates natural anatomical

variability by applying nonlinear spatial distortions to the tis-

sue structures;

• CutMix and MixUp, which generate hybrid samples by

combining patches from different images, thereby increasing

structural diversity and regularizing the model;

• Transformers-based augmentation, which leverages atten-

tion mechanisms to apply more context-aware and struc-

turally informed transformations to 3D volumes.

For synthetic data generation, investigating the use of Con-

ditional Generative Adversarial Networks (cGANs) and De-

noising Diffusion Probabilistic Models (DDPMs) can also be

considered an aim of future studies. However, a multi-step

validation framework is proposed to ensure the clinical plau-

sibility and utility of the generated samples:

• Employing quantitative similarity metrics such as the

Fréchet Inception Distance (FID) and the Structural Similar-

ity Index Measure (SSIM) to evaluate the fidelity of synthetic

images;

• Conducting expert reviews by trained radiologists to evalu-

ate the pathological realism of generated infection patterns.

Ultimately, the performance of the proposed framework can

be enhanced through the targeted methodological advance-

ments. The enhancement will lead to the improved clinical

utility, scalability, and generalization of the framework across

broader medical imaging tasks.

6. Conclusion

Given the critical importance of boundary patterns and de-

tailed local features in medical imaging, the proposed net-

work effectively harnesses high-resolution features through

its dual-path encoder. This design fosters a balance be-

tween local and global features, aided by the TIF module. In

this approach, data augmentation techniques and Res-conv

blocks implemented in the encoder contribute to optimiz-

ing the training process, thereby enhancing model perfor-

mance even with limited datasets. By analyzing the results

obtained and comparing them with findings from previous

studies, we anticipate that our model will yield substantial

advancements in the segmentation of medical images.
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Figure 1 Overview of the proposed architecture

Figure 2 The structure of the Swin Transformer block

Table 1 Performance results of the proposed model on the COVID-19-CT-Seg dataset

Metric Fold1 Fold2 Fold3 Fold4 Fold5 AVG
Infection mask
Dice 0.871 0. 882 0.864 0.869 0.875 0.872
Sensitivity 0.880 0.874 0.909 0.873 0.902 0.887
Specificity 0.938 0.973 0.982 0.982 0.971 0.969
Lung mask
Dice 0.972 0.979 0.972 0.983 0.982 0.977
Sensitivity 0.985 0.987 0.985 0.991 0.990 0.988
Specificity 0.994 0.998 0.997 0.999 0.999 0.997
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Figure 3 Attention map visualization

Figure 4 Depicts overview of the TIF module

Table 2 Performance results of the proposed model on MosMed dataset

Infection mask
Metric Fold1 Fold2 Fold3 Fold4 Fold5 AVG
Dice 0.732 0.682 0.672 0.705 0.772 0.713
Sensitivity 0.785 0.724 0.716 0.730 0.841 0.759
Specificity 0.996 0.996 0.999 0.995 0.999 0.997
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Table 3 Comparison of the number of parameters, FLOPs, and averaged inference time of our models in the COVID-19-CT-Seg experiments

Model #Params (M) FLOPs (G) Inference Time (s)
UNETR 94.28 42.11 12.08
SwinUNETR 33.7 67.403 14.23
Dual-path Swin Transformer-based model 61.02 124.23 20.45

Figure 5 Visual comparison between the ground truth and prediction of the models for 3 CT scan samples on the MosMed dataset
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